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We introduce a class of binary lattice gases which can be viewed as a lattice
analogue of the continuum Widom-Rowlinson model, and which also is related
to the beach model of Burton and Steif. This new model is shown to exhibit
phase transition for large particle intensities. Stochastic monotonicity results of
varying strength are derived in various parts of the parameter space. The main
tool is a random-cluster representation of the model, analogous to the Fortuin-
Kasteleyn representation of the Potts model.
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1. INTRODUCTION

In 1970, Widom and Rowlinson(26) introduced a stochastic binary gas
model which informally can be described as follows. We have two types of
particles A and B living in Rd, and the distribution of particles is that of
two independent Poisson processes, with respective intensities gA and gB,
conditioned on the event that no two particles of different type are within
distance r from each other. By scaling, we can without loss of generality set
r=1. Widom and Rowlinson conjectured that for d^2, this model would
exhibit a phase transition in the symmetric high-intensity regime where
gA = XB = X and 1 is sufficiently large. That this indeed is the case was soon
established by Ruelle,(24) and more recently Chayes et al.(8) gave a modern
stochastic-geometric proof of this result. By phase transition, we here mean
the nonuniqueness of infinite-volume DLR (Dobrushin-Lanford-Ruelle)
states with prescribed conditional distributions on compact subsets of Rd.
It is also known (see, e.g., refs. 8 or 20) that phase transition does not
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occur when A is small. This strongly suggests that the following conjecture
should be true:

Conjecture 1.1. For d^ 2, there exists a critical value Xc = G c ( d ) e
(0, oo) such that the Widom-Rowlinson model in Rd with XA = kB = A
exhibits a phase transition for A>2.c, but not for A < A C .

What current rigorous knowledge about the Widom-Rowlinson model
is lacking in this conjecture is the monotonicity property that if A1 < A2 and
there is phase transition at A = A1, then there should be phase transition
also at A = A2. The corresponding monotonicity is well known for several
lattice models such as the Ising and Potts models (see, e.g., refs. 14 or 20).
At first, one might therefore think that the problem with proving the
monotonicity in /I for the Widom-Rowlinson model would have something
to do with the fact that the particles live in the continuum Rd, rather than
on a discrete lattice. This, however, is not the case. Lebowitz and
Gallavotti(22) introduced a binary lattice gas which lives on Zd and which
is closely analogous to the Widom-Rowlinson model, and established
phase transition in the "high-intensity" regime, but also for this model the
conjectured monotonicity in the intensity escapes a rigorous proof. The
principal difficulty, which will be discussed in Section 4 of the present
paper, appears to be essentially the same for the lattice analogue as for
the original Widom-Rowlinson model; see also Sections 7 and 8 in
Haggstrom.(20) Recently, Brightwell et al.(5) studied the Lebowitz-
Gallavotti lattice variant of the Widom-Rowlinson model in situations
where Zd is replaced by other discrete graph structures. They showed that
the desired monotonicity holds on a Cayley tree (Bethe lattice), but
(perhaps surprisingly) that it fails on certain other graphs.

The purpose of this paper is to find some other lattice gas living on Zd

that (i) is close in spirit to the Widom-Rowlinson model, and (ii) is mathe-
matically sufficiently tractable to admit a proof of a statement analogous to
Conjecture 1.1. In Section 2 we present such a model, which we call the
volume-perturbed lattice Widom-Rowlinson (VLWR) model, and state our
main results. In Section 3, we introduce a so-called random-cluster repre-
sentation of the VLWR model. This representation is the key tool used to
prove the main results; this is done in Section 4. Section 5 provides addi-
tional motivation for the VLWR model by establishing intimate relations
with other lattice models (the beach model of Burton and Steif,(6) and a
certain trinary lattice gas). Finally, in Section 6, we will discuss a multitype
generalization of the VLWR model.

Before closing this introductory section, let us say a few general words
about the method we exploit in order to prove our main results: the use
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of a random-cluster representation. This approach involves a geometric
representation of the original model. The types of particles are unidentified,
and this allows a priori difficult questions about phase transition to be
translated into easier questions about percolation (i.e., into stochastic-
geometric questions about long-range connectivities). The original random-
cluster model can be used to represent Ising and Potts models, and was
introduced by Fortuin and Kasteleyn.(12) Aizenman et al.(1) later demon-
strated how this representation could be used to study the phase transition
phenomenon in simple and elegant probabilistic terms. Subsequently,
random-cluster representations of several other models were introduced
and exploited. For instance, Chayes et al.(8) studied the phase transition
behavior of the Widom-Rowlinson model by such means (see also Giacomin
et al.(16)), and Haggstrom and Georgii(15) used similar methods to study a
wider class of models allowing e.g. soft-core interactions between particles.
We refer to Haggstr6m(20) and to Chayes and Machta(9,10) for general
introductions to such methods, and to Grimmett(18) for a modern proba-
bilistic discussion of the original (Fortuin-Kasteleyn) random-cluster
model. See also Alexander(2) for some recent related work.

2. THE MODEL AND THE MAIN RESULTS

We first describe the VLWR model on a finite graph. Let G = (V, E)
be a finite connected graph with vertex set V and edge set E. For v, w e V,
write d(v, w) for the graph-theoretical distance between v and w, i.e., d(v, w)
is the number of edges in the shortest path between v and w. Each v e V can
be in one of three states A, B and 0, where A and B represent two different
types of particles, and 0 is void. The state space {A, 0, B} is equipped with
the ordering A <0<B. For each W<=, V we write =^ for the induced coor-
dinatewise partial order on {A, 0, B} w, so that for <{;, 77e {A, 0, B} w we
have £=^77 if and only if £(v) ^q(v), Vye W.

The VLWR model on G has two parameters A (the activity parameter)
and y (the volume-interaction parameter). A particle configuration £ e
{A, 0, B} v is called feasible if for no pair of vertices v, u e V with d(v, w) ̂  2
we have £,(v) = A and £(w) = B. In other words, for a configuration to be
feasible we need that no two particles of different type sit within distance
2 from each other. Writing | • for cardinality of a set, we define, for
te{A,Q, B}v,
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Definition 2.1. The VLWR measure vGr on {A,0,B}y with
parameters A ^ 0 and y ^ 0 is the probability measure which to each
£ e {A, 0, B} v assigns probability

Here ZG,y is a normalizing constant.

When y=1 , the factor y(n*E) disappears and the VLWR measure v£1

arises by letting each site independently be in state A, 0 or B with respective
probabilities A/( 1 + 2/1), 1/( 1 + 2/1) and A/( 1 + 2/1), and then conditioning on
the event that the arising configuration is feasible. It is natural to interpret
the feasibility condition by thinking of each particle as having a nonzero
radius which makes it occupy not only the site at which it is centered, but
also all neighbouring vertices in G. The feasibility condition then says that
particles can overlap only if they are of the same type. With this interpreta-
tion, «„, becomes the number of sites that are not covered by some particle.
Taking y > 1 then amounts to biasing v£' in favour of configurations
where the amount of such "vacuum" is large, so that particles tend to be
packed closer together, whereas taking y < 1 instead biases the measure
towards spreading the particles more evenly over G. (The way in which the
y parameter perturbs v£,1 is similar in spirit to a certain perturbation of the
Poisson process known as the area-interaction process; see Baddeley and
van Lieshout.(3))

Of course, it would be natural to allow the particles A and B to have
two different intensities Ax and XB, but in this paper we will deal exclu-
sively with the symmetric case GA = kB, so we save some ink by writing
simply X for their common value.

We now go on to define the VLWR model on Zd in accordance with
the usual DLR formalism. We think of Zd as a graph with edges connecting
vertices whose (Euclidean) distance is 1. For a finite set SczZd and configu-
rations £ e {A, 0, B}s and £'e{A, 0, B} Zd/s, we define (£ v £') e {A, 0, B } z d

to be the configuration on Zd which coincides with % on S and with £' on
Zd\S. For such S, £, and £', we define
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where dS denotes the "outer boundary" of S, i.e.,

For a feasible configuration d; 'e{A, 0, B} z d / s , we define v g , , to be the
probability measure on {A,0, B}s which to each £ e { A , 0 , B}s assigns
probability

where v£_£, is a normalizing constant (Z with various sub- and superscripts
will always denote normalizing constants).

Definition 2.2. Let v be a probability measure on {A, 0, B] z d , and
let X be a {A, 0, 5}zd-valued random object distributed according to v. We
say the v is a Gibbs measure for the VLWR model on Zd with parameters
A > 0 and y ^ 0 if it is concentrated on feasible elements of {A, 0, B } z d and
for all finite S c Zd admits conditional probabilities such that

for all feasible e e { A , 0, B}zd/Vs and all «?e {A, 0, B}s.

Note that the VLWR model on a finite graph has similar conditional
distributions, and that for any nested sequence S 1 cS 2 <= ••• <=Zd, (2)
gives a consistent set of conditional distributions. Furthermore, if v is a
Gibbs measure for the VLWR model on Zd, then the conditional distri-
bution of X(S) given X(Zd\S) depends on X(Zd\S) only via its values on
vertices weZd\S sitting within distance 2 from some veS . In other words,
A' is a Markov random field with range 2, justifying the term "Gibbs
measure" used in the definition. The existence of some Gibbs measure for
the VLWR model on Zd with the given parameter values A and j follows
by standard compactness arguments (see, e.g., ref. 14). Here we focus on
the question of uniqueness (or nonuniqueness) of such measures. In par-
ticular, we are interested in how the multiplicity of Gibbs measures varies
with /I when y is kept fixed. For d=1, there is a unique Gibbs measure for
any A and y (as is the case for all finite state Gibbs models in one dimen-
sion satisfying a mild irreducibility condition) so we will focus on d>2
only. It turns out that for general y > 0, we can do no more than what has
been done for the other gas models discussed in the introduction:



Theorem 2.3. For fixed d^2 and y>0, the VLWR model on Zd

with parameters G. and y has a unique Gibbs measure if /I is taken to be
sufficiently small. If instead A is taken to be sufficiently large, then the
model has more then one Gibbs measure.

If we restrict to y ̂  2 then the situation is somewhat more satisfactory,
as we can prove the following analogue of Conjecture 1.1.

Theorem 2.4. For fixed d> 2 and y > 2, there exists a critical value
Xc = Gc(d, y) such that for X < Xc, the VLWR model on Zd with parameters
X and y has a unique Gibbs measure, whereas for A > Ac the model has
more then one Gibbs measure.

It seems reasonable to expect that the assertion in Theorem 2.4 should
be true for any y > 0, but the monotonicity arguments that we will use in
Section 4 are not sufficiently strong to yield such a conclusion. Hence, the
model exhibits a kind of threshold at y = 2 as far as amenability to certain
monotonicity arguments is concerned. It turns out that there is another
such threshold at y = 1; see Proposition 2.5 below. We need some more
preliminaries before we can state that result.

For V finite or infinite, and two probability measures v1 and v2

on {A,0, B}y, we say that v1 is stochastically dominated by v2, writing
v 1 ^ d

v 2 > if for all increasing (with respect to <J) local functions
f: {A, 0, B}V->R we have
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By a celebrated theorem of Strassen (see refs. 25 or 23), this is equiv-
alent to the existence of a coupling of two {A, 0, B} ^-valued random
elements X1 and X2 (i.e., of a joint construction of X1 and X2 on the same
probability space) such that X1 has distribution v1 and X2 has distribution v2,
and with the property that X1 =^ X2 with probability 1.

We equip {A, 0, B}Zd with the usual product topology, so that weak
convergence of a sequence {v i}°°= 1 of probability measures on {A,0, B}Zd

to a limiting measure v, is equivalent to having l i m , _ 0 0 v , ( C ) = v(C) for
any cylinder event C (a cylinder event is an event which depends on finitely
many coordinates only).

For finite S*=Zd, we let £,'A denote the configuration on Zd\S con-
sisting of ^4's only, and define v^\ to be the probability measure on
{A, 0, B}z" for which X(Zd\S) = t'A almost surely, and X(S) has distribu-
tion v£^ , . We define £'B and v£^ analogously.
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Proposition 2.5. Fix d^2, A.^0 and y ^ 1 , and let S = {S,},°1,
be any sequence of subsets of Zd which is increasing in the sense that
S1 c S2 <= • • •, and which converges to Zd in the sense that each v e Zd is
in all but finitely many S,'s. Then the limiting measures

and

on {A, 0, B } z d exist and are independent of the choice of S (and therefore
also translation invariant). Both limits are Gibbs measures for the VLWR
model with parameters A and y, and furthermore

for any other Gibbs measure v^* for the VLWR model with the same
parameters. This means, in particular, that the existence of more than one
Gibbs measure for the VLWR model with the given parameters is equiv-
alent to having

All these results will be proved in Section 4.
It is not hard to define a continuum analogue of the VLWR model by

adding a volume-interaction term to the Hamiltonian in the original
Widom-Rowlinson model. We are, however, unable to prove any analogue
of Theorem 2.4 for such a continuum model.

3. THE RANDOM-CLUSTER REPRESENTATION

We now introduce the random-cluster representation of the VLWR
model on a finite graph G = ( V , E ) . In this representation, each site can
only be in one of two states, 0 and 1, where a 1 signifies the presence of
a particle (of either type A or type B), and a 0 means that no particle is
present.

Given a random-cluster configuration r] e {0, 1}V, we define an edge
configuration (a = a>(nj)e {0, 1}E by letting each eeE take value
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We then consider the connected components in the random graph obtained
from G by deleting each edge eeE with co(e) = 0. We write k^r;) for the
number of such connected components that contain only a single vertex
ve V, and k2(j) for the number of connected components that contain at
least two vertices (note that k2(j) counts exactly those connected com-
ponents that contain some veV such that rj(v) = 1). We also let n(j)
denote the number of vertices v e V for which r(v) = 1.

Definition 3.1. For p e [0, 1] and y^0, we define the VLWR ran-
dom-cluster measure n%p,y on {0, 1}V to be the probability measure which,
to each 77 e {0, 1} y, assigns probability

For G^0 and y ̂  0, consider the following way of picking a random con-
figuration Xe {A, 0, B} v. First pick Ye {0, 1} v according to the VLWR
random-cluster measure [ i p , y , where p = A / ( A + 1 ) . Then let X(v) = 0 for
each v e V for which Y(v) = 0. Finally, for each connected component C of
co( Y), we flip an independent fair coin, and if it comes up heads, then we
let X(v) = A for every vertex v in C such that Y(v) = 1, while if tails, then
we let X(v) = B for every y in C with Y(v) = 1. Write vG,1 for the distribu-
tion of Xe {A, 0, B} v obtained in this way.

Proposition 3.2. The above procedure yields an [A,0, B } V -
valued random element distributed according to the VLWR measure for G
with parameters A and y, i.e.,

Proof. It is immediate from the construction that v^ , y (£ , )>0 if and
only if £ is feasible. Therefore, it suffices to show that

for any two feasible configurations £1 £2e {A, 0, B } V . Pick two such con-
figurations E1, and £2, and define t1, t2e {0, 1}V to be the corresponding
random-cluster configurations, i.e.,
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for ; = 1 , 2 and each veV. Note that / / (^ i) = n A ( £ i ) + n B ( E i ) , and that
k 1 ( n i ) = n * ( £ i ) . We get

as desired. |

In the next section, we will use the random-cluster representation to
study the VLWR model on Zd. Fortunately, this does not require an exten-
sion of the VLWR random-cluster model to the case of infinite graphs (for
the Fortuin-Kasteleyn random-cluster model, such an extension is not
entirely elementary (see, e.g., ref. 18) and although a similar extension for
the VLWR random-cluster model is possible, it does involve certain techni-
calities). However, we will need a random-cluster representation of the
measure v^y

A defined prior to Proposition 2.5. This turns out to be a
straightforward extension of the finite graph case, because v£, YA is concen-
trated on a finite subset of {A, 0, B}z .

As usual, we let S be a finite subset of Zd. Let YS denote the set of con-
figurations ne{0, 1}Zd with the property that t ( v ) = 1 for each veZd\S
(note that us is finite). For t e # s , define u > ( n ) , k 1 ( ] ) and k2(t]) as in the
case of a finite graph G. Note that both k 1 ( t j ) and k2(j) are finite for each
neyS, because the random graph corresponding to a>(r]) will contain a
single infinite connected component, and a finite number of finite connected
components, all of which are contained in S. Also define n(S,rj) to be the
number of vertices ve S for which j(v) = 1.

Definition 3.3. For p>e[0 , 1] and >'>0, we define the measure
fi%\ on {0, 1}Zd to be the probability measure which is concentrated on >yS

and which to each // e yS assigns probability

An {A, 0, fi}zd-valued random element X with distribution v^y can now
be obtained by a procedure analogous to the one described prior to
Proposition 3.2. First let p = / / (1+/) and pick the random element



Ye{0, 1}v according to n\. Then let X(v) = 0 for each v for which
Y(v) = 0, and let X(v) = A for each veZd which sits in the infinite con-
nected component of a>( Y) and which has Y(v) = 1. Finally, for each finite
connected component C of u>( Y), flip an independent fair coin to deter-
mine whether all vertices v in C with Y(v)= 1 should take value A or B
in X.

Lemma 3.4. The random configuration Xe {A, 0, B } Z d , picked as
above, has distribution v£,y,

A.

We omit the proof, as it is completely analogous to the proof of
Proposition 3.2. Of course, jp,y can also be used to obtain a random
element X e { A , 0 , B } z d with distribution vx,y just modify the above
construction by assigning value B instead of A to vertices in the infinite
connected component of co( Y).

The next simple lemma plays a key role in the analysis of phase tran-
sitions in the VLWR model. It relates the effect that the "boundary condi-
tion" X(Zd\S) has on the distribution of X(v) to a certain connectivity
probability in the random-cluster representation. Given the finite set
SaZ d , a vertex veS, and a random configuration Ye{0, 1}Zd, write
v<->Zd\S for the event that v is in a connected component ofca(Y) which
intersects Zd\S.
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Lemma 3.5. With S and v as above, and /g, ;>^0, we have

where p = X/(\ + A).

Proof. Write Ds „ for the event that Y(v) = 1 and v is in a connected
component of co(Y) which does not intersect Zd\S. By Lemma 3.4, we
have that

and that

The desired equality follows. |

We end this section by remarking that in the y = 2 case, the random-
cluster representation presented here reduces to the model which was intro-
duced in ref. 20 as a random-cluster representation of the beach model of
Burton and Steif;(6) see Section 5.
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4. PROOFS OF MAIN RESULTS

In addition to the random-cluster representation given in the previous
section, the other basic ingredients in the proofs of the main results of this
paper are (i) a simple percolation model and ( i i ) a comparison result
(Lemma 4.1) which is essentially due to Holley(21) and which is closely
related to the celebrated FKG inequality.(13)

For a finite set V, we generalize the partial order =^ defined in Sec-
tion 2 to the coordinatewise partial order on Ry. For a finite set T and a
probability measure P on Tv, we say that P is irreducible if the set
rjeTv: P(t])>0} is connected in the sense that any element of Tv with

positive P-probability can be reached from any other via successive coor-
dinate changes without passing through elements with zero /"-probability.

Lemma 4.1. (Hol ley) Let V be a finite set and let T be a finite
subset of R. Let P and P' be two probability measures on Ty, and let X
and X' be random elements with respective distributions P and P'. Assume
that P' is irreducible and that it assigns positive probability to the maximal
element of Tv. Suppose furthermore that for every ve V, every t e T, and
every £, // e TV/{v} such that ^r,, P(X( V\{ v]} = c) > 0 and P'(X'( V\{ v})
= 77) >0, we have

Then P^P1.

Proof. The result follows by copying (almost verbatim) Holley's(21)

original proof, a variant of which can also be found in ref. 20. |

We next introduce a percolation model on Zd as follows. Let ft^d
denote the probability measure on {0, 1}Zd corresponding to letting each
y e Zd independently take value 1 or 0 with respective probabilities p and
1 —p. Let F be a {0, 1}Zd-valued random configuration with distribution
upd, define the edge configuration w( Y) as in Section 3, and write v<-> oc
for the event that veZd is in an infinite connected component of oj( Y). Of
course, u p d (v><-»oo) is independent of the choice of v.

Lemma 4.2. For c/^2, there exists a critical value pc = p c ( d ) e
(0, 1) such that
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Proof. Consider standard independent site percolation with retention
parameter p on the graph Zd whose vertex set is Zd and whose edge set
consists of all pairs of vertices within L,-distance 2 from each other. Write
D ( p ) for the probability in this model that a given vertex v is in an infinite
connected component. Then there exists a p* = p*(d ) e (0, 1) such that

as follows from a completely straightforward adaption of the usual proofs
of the corresponding result for site or bond percolation on the nearest
neighbour graph of Zd; see, e.g., Grimmett.(17) But a moment's thought
reveals that 9(p) =//p

d F(t;) = 1, v<-> oo), so the lemma follows with
P c = P * . I

Proof of Theorem 2.3. The first assertion (that sufficiently small A
implies a unique Gibbs measure) is easily shown by applying either of two
standard techniques: Dobrushin's uniqueness theorem (see refs. 11 or 14)
or the disagreement percolation approach of Van den Berg and Maes.(4)

We omit the details.
Instead, we go on to prove the second assertion (that sufficiently large

1 implies non-uniqueness of Gibbs measures). Let S = {Si}
oo be an

increasing sequence of finite subsets of Zd converging to Zd as in Propo-
sition 2.5. Consider the sequence { v j ; * A } o o of probability measures on
{A, 0, B } Z d . By compactness, we can find some subsequential weak limit of
these measures; write v^y for some such limiting measure. By general Gibbs
theory (see ref. 14), v^y is a Gibbs measure for the VLWR model with the
given parameter values. Pick a vertex v e S1. In order to prove non-unique-
ness of Gibbs measures for large A, it is sufficient to show that

because if we had a unique Gibbs measure, then by the symmetry of the
VLWR model (with respect to interchange of A and B) the left-hand side
of (8) would have to equal 0. To show that (8) holds for X large, it suffices
to show that

for A large. By Lemma 5.5, this is equivalent to showing that
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for p sufficiently close to 1. The strategy for proving (9) will be to compare
/*£•/! to the percolation measure p£d for a certain choice of /?*, using
Lemma 4.1. To this end, we need to compute the single-site conditional
distributions for fipi and for np

s '
y

1 . Obviously,

for any weZd and any ne{0, l}Zd/{W}. The corresponding relation for
up,y is of course more complicated: For w e Si, and rj' e {0, 1}Zd/{w}, define
rl'o = (rl' v 0)' i-e-» >7o is the element of {0, 1}Zd which is 0 at w and agrees
with r\' elsewhere. Furthermore, define K 1 ( w , n 0 ) (resp. K 2 ( w , m 0 ) ) to be
the number of connected components in <a(n,0) which intersect the set
{u e Zd: d(u, w) < 1}, and which contain exactly one (resp. more than one)
vertex of Zd. We only need to consider those r\' for which tj'0e^s. For
such //', a direct application of Definition 3.3 yields

Since K1, and K2 both take their values in {0,..., 2d+ 1}, we have for y^ 1
that the right-hand side of (10) is bounded from below by

while for y ^ 1 it is bounded from below by

Combining these observations, we thus have, for any y, any w e Si, and any
r\' chosen as above, that

Note that the right-hand side of ( 1 1 ) tends to 1 as p/ 1. Pick p* e(pc, 1),
where pc is defined as in Lemma 4.2, and then pick p < 1 close enough to
1 so that the right-hand side of (11) is at least p*. We can then apply
Lemma 4.1 to the projections on {0, 1} Si< of fipd and f i p , y to show that the



60 Haggstrom

latter dominates the former stochastically. Since u p , y ( Y ( Z d \ S i ) = 1) = 1,
this extends trivially to

Since (Y(v) = 1 ,v*->Z d \S i ) is an increasing event which furthermore is
implied by ( Y ( v ) = 1, V«-» oo), we get that

so (11) is established, and the proof is complete. |

The next task is to prove Proposition 2.5. To this end, it is convenient
to isolate a couple of lemmas.

Lemma 4.3. Let S<=Zd be finite, and let £' and £" be two feasible
elements of {A, 0, B}Zd^s satisfying e*$£". For G^0 and y ^ l 1  we then
have

Proof. By Lemma 4.1, it is sufficient to prove (12) in the case where
S consists of a single vertex t;. For this, it suffices to show that

and that

For £e {A, 0, B}Zd/{v}, define m A (e ) to be the number of vertices w with
d(v, w)< 1 that either have value A or have some nearest neighbour with
value A, i.e.,
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and define mB(£,) analogously. A direct calculation using the definition of
v££ shows that

A key observation now is that vfy^((X(v) = A) is increasing in mA(£,) and
decreasing in mB(£) (this is where the assumption y^1 is needed).
Moreover, mA(^) is decreasing in £, and mB(£) is increasing in £. Com-
bining these observations, we get that v f , y ( X ( v ) = A) is decreasing in £,, so
we can conclude that (13) holds. The other inequality (14) follows
similarly. |

Lemma 4.4. Let S1 and S2 be finite subsets of Zd such that
S1 c S2. For A > 0 and y ̂  1, we then have

Proof. Let X1 and X2 be random elements of { A , 0 , B } Z d with
respective distribution v^Y

A and V g y
A . By conditioning X2 on its values off

S1 and applying Lemma 4.3, we get that the projection on {A, 0, B}d1 of
v%1*A is stochastically dominated by the projection on {A, 0, B } S

1 of v^r,A-
Since v 1 A ( X ( Z d \ S 1 ) = A)= 1, we get (15) as an immediate consequence.

Proof of Proposition 2.5. By Lemma 4.4, we have

so that the limiting measure v^Y exists by monotonicity. By the same
reference to general Gibbs theory as in the proof of Theorem 2.3, this limit-
ing measure is a Gibbs measure for the VLWR model with the given
parameter values. Let VA,y be any Gibbs measure for VLWR model with the
same parameters. By conditioning on the configuration off S,, as in the
proof of Lemma 4.4, we get that

and this inequality is preserved under limits, so that
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This implies that vG,y is independent of the choice of S = {Si},°^1 by the
following argument: If v^y and v^y are two limiting measures arising with
two different choices of S, then v^y^d v^y and v^r^<d vG,y by two applica-
tions of (16). This of course implies that vG,y = vG , y .

We have thus shown (3) and the first half of (5). To show (4) and the
second half of (5) we use the exact same arguments with the roles of A
and B interchanged. The equivalence between nonuniqueness of Gibbs
measures and (6) follows immediately from (5). |

It remains to prove Theorem 2.4. Again, it is convenient to isolate two
lemmas.

Lemma 4.5. For G<0, y> 1 and any veZd, we have

if and only if

Proof. The "only if" direction is immediate from the A B symmetry of
the VLWR model, so we proceed to prove the "if" direction. Suppose that
(17) holds. Then, by translation invariance of v%y, we have

for all w € Zd. Further application of the AB symmetry of the model yields

and

so that all four probabilities considered in (18), (19) and (20) are equal. By
(5), we have vG,y<d v e , y , so by Strassen's Theorem we can construct a
coupling of two {A,0,B} z d-valued random objects X and X' with respec-
tive distributions v^y and vg,y such that X^X' almost surely. Writing P
for some probability measure supporting such a coupling, we get

and similarly P(X(w) ^0, X'(w) = B) =0. Hence P(X(w)^X'(w)) = Q.
Countable additivity implies P(X^X') = 0, so v^y = v^y as desired. |
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Lemma 4.6. Let S be a finite subset of Zd, and pick y^2 and
0^p1 ^ p2^ 1. Then

Proof. In view of Lemma 4.1, it is sufficient to prove that the right-
hand side of (10) is increasing in p and n'. That it is increasing in p is
immediate, and to see that it is increasing in tj' it is sufficient to show that
the expression

is increasing in n0. To do this, we define K ( W , n ' ) = K 1 ( W , n0) + K2(w, n0)
and rewrite (22) as

Since y/2 < 1, we have that this expression is decreasing both in K1(w, rj'0)
and in K(W, rj'0), so it only remains to show that k1(tv, rj'0) and K(W, rj'0) are
decreasing functions of rj'0. This, however, is immediate upon recalling that
K 1 ( W , N 0 ) is the number of single-site connected components of a>(w,rj'0)
that intersect the "neighbourhood" {ueZd : d(u, w) ^ 1} of w, and noting
that K ( W , I I ' 0 ) is the total number of connected components of co(w, N')
intersecting this neighbourhood. |

Proof of Theorem 2.4. By Theorem 2.3, we only need to show the
monotonicity statement which is implicit in Theorem 2.4, i.e., that if
A1 <A2 , then the existence of more than one Gibbs measure at intensity /1,
implies the same thing at intensity 12. So suppose that we have more than
one Gibbs measure at intensity G1. By Proposition 2.5 and Lemma 4.5, this
implies that

i.e., that

(the limit exists by Proposition 2.5). Set p1 = A 1 / (1 +G1), and p2 = A2/
(1 +A2). By Lemma 3.5, (24) is the same as having
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By Lemma 4.6, this implies

so that another application of Lemma 3.5 yields

Hence

so by Lemma 4.5 again we have more than one Gibbs measure at intensity A2-

5. RELATIONS TO OTHER MODELS

This section deals with relations between the VLWR model and two
other lattice models. In Subsection 5.1, we will show how the VLWR
model with y = 2 in a certain sense is equivalent to the so-called beach
model, which was introduced by Burton and Steif(6) and further studied by
Haggstrom.(19) Subsection 5.2 introduces a certain nonsymmetric trinary
lattice gas which satisfies a similar equivalence with the VLWR model.

5.1. The Beach Model

Let M1 and M2 be positive integers such that M1 <M2. The beach
model on a finite graph G with parameters M1 nd M2 can be described
as follows. Define the set F of attainable values at each vertex v e V as

where
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Call feF

and call a configuration E,e Fv feasible if for all w, u e V such that d(u,v) = 1
we have that ((w) and £(v) are either both positive, both negative or both
privileged. In other words, negatives and positives are not allowed to sit
next to each other unless they are both privileged. The name "beach
model" comes from the interpretation in two-dimensional lattices that if a
symbol represents altitude above sea level, then the feasibility condition
prevents shores from being too steep.

Definition 5.1.1. The beach measure uM1,M2 for the graph
G = ( V , E ) with parameters M1 and M2 is the probability measure on Fv

which is equidistributed over all feasible elements of Fv.

This definition extends in a natural way to infinite-volume Gibbs
measures as follows.

Definition 5.1.2. Let ^ be a probability measure on Fzd, and let
U be an Fzd-valued random object with distribution \j/. We call i/> a Gibbs
measure for the beach model on Zd with parameters M1 and M2 if it is
concentrated on feasible elements of FZd and admits conditional probabil-
ities such that for all finite ScZd and all feasible £' e FZd/s the conditional
distribution of U(S) given U(Zd\S)=C is uniform over all £eFs for
which (C v £') is feasible.

The beach model in d^-2 dimensions with M 2 / M 1 sufficiently large
exhibits a phase transition, as shown in ref. 6. It was later shown in ref. 19
that for d^2, there is a critical value Mc = M c ( d ) e ( 1 , oo) such that there
is a unique Gibbs measure for M 2 / M 1 < Mc and multiple Gibbs measures
for M 2 / M 1 > M C .

Here we shall demonstrate a certain equivalence between on one hand
Gibbs measures for the VLWR model with A = ( M 2 - M 1 ) / M 1 4 and 7 = 2,
and on the other hand Gibbs measures for the beach model with param-
eters M1 and M2. One consequence of this equivalence is that
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where Ac is defined as in Theorem 2.4. The exact value of Mc(d) is not
known in any dimension; some very crude upper and lower bounds can be
found in ref. 6 and in ref. 19, respectively.

We begin with the finite graph case. Consider the following way of
picking a random configuration Ue Fy. First pick Xe {A, 0, B}V accord-
ing to the VLWR measure for G with G = ( M 2 - M 1 ) / M 1 and y = 2. Then,
for each ve V independently, pick U(v) uniformly from

Write $M1,M2 for the distribution of U e F V obtained in such a way.

Proposition 5.1.3. The above procedure yields an FV-valued
random object distributed according to the beach measure for G with
parameters M1 and M2, i.e.,

Proof. It is clear from the construction that wM1,M2 assigns positive
probability only to feasible elements of Fv. It is therefore sufficient to show
that

for any two feasible configurations £l,£2eFy. Write £1 for the (unique)
element of {A, 0, B] from which fi can be obtained by the above proce-
dure, and define £2 similarly. Recall the definitions of nA(%), nB(£) and
n„,(£) in (1). In addition to these, define

and note that for £ feasible, we have
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We get

so (27) holds, and we are done. |

One can also go the other way (from the beach model to the VLWR
model): Suppose we pick UeFy according to the beach measure tM1,M2,
and then pick Xe {A, 0, B] v by letting

Then X has distribution v^y, with ^. = ( M 2 - M 1 ) / M 1 and A = 2; this
follows immediately from Proposition 5.1.3.

The next results an infinite-volume analogue of Proposition 5.1.3.

Proposition 5.1.4. Suppose that we pick Xe {A, 0, B}Zd accord-
ing to a Gibbs measure vG,y for the VLWR model with A = (M2-M1)/M,
and A = 2, and that we then obtain UeFZd from X by the procedure
described in (26). Then the distribution of U is a Gibbs measure for the
beach model with parameters M1 and M2.

Proof. Write WM1,M2 for the distribution of UeF Z d . It is clear from
the construction that WM1,M2 is concentrated on the set of feasible elements



68 Haggstrom

of Fv, so all we need to do is to show for any finite S<=Zd that WM1,M2

satisfies the uniform conditional probability property of Definition 5.1.3.
Define

Since X is a Markov random field with range 2, we have that U is a
Markov random field with range at most 2. In other words, the conditional
distribution of U(S) given U(Zd\S) depends only on U(S*\S). Let G be
a finite graph whose vertex set V is some cubic portion { —k,..., k}d of Zd,
where k is large enough so that V contains S*, and whose edge set E
consists of Euclidean nearest neighbours ( just as in the Zd lattice). Pick a
{A, 0, B}V-valued random element XG according to the VLWR measure
v£2, and pick UGeFv as in (26) using XG. By the Markov random field
properties of X and XG, and the construction of U and UG, we have for
any C ' e F p s that the conditional distribution of U(S) given U(S*) = C
must be the same as the conditional distribution of UG(S) given
UG(S*) = £'. But the latter conditional distribution has the desired unifor-
mity property by Proposition 5.1.3, so we are done. |

We thus have a simple way to create Gibbs measures for the beach
model from Gibbs measures for the VLWR model. The next result shows
that we can also go the other way.

Proposition 5.1.5. Suppose that we pick U e F Z d according to
a Gibbs measure for the beach model with parameters M1 and M2, and
that we obtain Xe {A, 0, B}Zd by pointwise application of (28). Then X is
distributed according to some Gibbs measure for the VLWR model with
G = ( M 2 - M 1 ) / M 1 and y = 2.

Proof. Let vG,2 be any Gibbs measure for the VLWR model on Zd

with the given parameter values, let Xe {A, 0, B}Zd have distribution vG,2,
and obtain U e F Z d from X as in Proposition 5.1.4. Then, by the same
proposition, the distribution WM1,M2 of A" is a Gibbs measure for the beach
model. Let P be some probability measure supporting the random con-
figurations U, X, U and X. Define S* as in the previous proof, and further
define

In order to show that X is distributed according to a Gibbs measure for the
VLWR model, we need to show



(i) that X is feasible with probability 1,
( i i ) that for any finite S<^Zd the conditional distribution of X(S)

given X(Zd\S) depends only on X(S**\S), and
(i i i ) that for feasible £'e {A, 0, B}s"\s the conditional distribution

of X(S) given X(S**\S) = £' is the same as the conditional dis-
tribution of X(S) given X(S**\S)=£.

That (i) holds is immediate from the construction. To show that ( i i ) and
(i i i ) hold, we let f" be some feasible element of Fs**/S*. By Definition 5.1.2,
the conditional distribution of U(S*) given U(Zd\S*) depends only on
U(S**\S*), and the corresponding statement holds for 0. Furthermore,
by the same definition, the conditional distribution of U(S*) given that
U(S**\S*) = C is the same as the conditional distribution of U(S*) given
that U(S**\S*) = £H. It follows that the conditional distribution of X(S*)
given that U(S**\S*) = £" is the same as the conditional distribution of
X(S*) given that U(S**\S*) = C. This, in turn, implies that the con-
ditional distribution of X(S) given [^(S*/S)=£', U(S** -S*) = C"] is
the same as the conditional distribution of X(S) given [X(S*\S) = £',
U(S** — S*) = £"]• But the latter conditional distribution agrees with
Definition 2.2, so the former must do so as well, whence ( i i i ) is proved. By
noting that the last two conditional distributions are independent of C" and
of any further information about configurations on Zd\S*, we also get
(ii). I

It is easy to see that the two mappings in Propositions 5.1.4 and 5.1.5
constitute a bijection between Gibbs measures for the VLWR model and
Gibbs measures for the beach model. This implies, in particular, that
uniqueness of Gibbs measures for the VLWR model with parameters M,
and M2 is equivalent to uniqueness of Gibbs measures for the beach model
with A = (M2-M1)/M1 and y = 2. Hence, (25) is established.

Let us finally point out that there exists yet another Gibbs model
which is equivalent to the other two; namely, the so-called site-centered
ferromagnet which was introduced in ref. 19. The site-centered ferromagnet
has state space { - 1 , 1 } at each vertex and is obtained from the beach
model similarly as in (28) by setting all positives to +1 and all negatives
to — 1. While the beach model is a Markov random field with range 1,
both the VLWR model and the site-centered ferromagnet are Markov ran-
dom fields with range 2.

5.2. A Trinary Lattice Gas

To readers who find the y factor in the definition of the VLWR model
unnatural, we here give an alternative representation of the y^1 VLWR
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model. We call this new model the particle-perturbed lattice Widom-
Rowlinson (PLWR) model. In this alternative representation, the volume-
interaction factor is disposed of, at the cost of having to introduce a third
particle type C. The AB symmetry of the VLWR model is preserved in the
PLWR setting, but the third particle type C plays a role which is different
from the other two.

As usual, we begin with the case of a finite graph G = (V, E). Each
ue V will be in one of four states A, B, C and 0. A particle configuration
£e {A, B, C, 0} v is said to be feasible if

(i) for no pair of vertices v,weV with d(v, w)^ 2 we have C,(v) = A
and E(w) = B, and

(ii) for no pair of vertices v, w e V with d(v, w) = 1, we have £(v) = C
a n d e w ) e { A , B } .

As in the VLWR model, the feasibility condition should be thought of as
preventing particles of different type from overlapping each other. We then
have to think of A and B particles as having the same (large) radius, and
of C as having a different (smaller) radius.

For £e{ /4 , B, C, 0} F, define nA(£) and nB(£) as in Section 2, and
define nc(£) analogously (i.e., HC(£) is the number of vertices ve V for
which £(v) = C).

Definition 5.2.1. The PLWR measure nG,Gc on {A, B, C, 0}Vwith
parameters G>0 and A C ^ 0 is the probability measure which to each
Ce {A, B, C, 0} v assigns probability

Now consider the following way of obtaining a random element
We {A, B, C, 0}K First pick Xe{A,0, B}y according to the VLWR
measure v^Y with y ^ 1 . Then let W(v) = X(v) for every veV with the prop-
erty that X ( v ) e { A , B } or X ( w ) e { A , B } for some we V with d(v,w) = 1.
Finally, let kc = y— 1, and let all remaining vertices get value 0 or C
independently, with respective probabilities l /U C + 1) and A C / ( A C + 1 ) .

Proposition 5.2.2. The random element WE {A, B, C, 0} V,
obtained as above, is distributed according to the PLWR measure nG,Gc.

We omit the proof of this result, which is an easy adaption of the
proof of Proposition 5.1.3. An immediate consequence of the result is that
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if we pick We {A, B, C, 0} v according to nG,Gc and then just delete all the
C-particles (i.e., turn them into 0's), then the arising {A, 0, B] V-valued
random element has distribution uVG,y with y = Gc+ 1.

The PLWR model may be extended from finite graphs G to the lattice
Zd in the same way that such extensions of the VLWR and beach models
were made in Definitions 2.2 and 5.1.2. A straightforward adaptation of the
proofs of Propositions 5.1.4 and 5.1.5 then give us an equivalence between
Gibbs measures for the VLWR model on Zd with parameters X and y
on one hand, and Gibbs measures for the PLWR model on Zd with
parameters X and Ac = y — 1 on the other, completely analogous to the
equivalence between Gibbs measures for VLWR and beach models. This
means e.g. that once we have proved Theorems 2.3 and 2.4, we can
immediately claim the corresponding results for the PLWR model.

6. A MULTITYPE GENERALIZATION

A natural generalization of the VLWR model is to allow three or more
different types of particles, rather than just the two types A and B. Let
q^-2 be an integer, let as usual G = (V, E) be a finite graph, and let
A1,...,Aq represent q different types of particles. Call a configuration
£e {^i,..., Aq, 0} v feasible if for no i, je {1,..., q] with //y and no t>, we V
with d(v, w ) < 2 we have £(v) = A, and £(w) = Aj. Let nA{£,) denote the
number of vertices veV for which £(v) = Ai, and define «*(£) as in
Section 2.

Definition 6.1. The multitype VLWR measure vg^ on
{A1,..., Aq, 0} y with parameters qe {2, 3,...}, A^0 and y^O is the prob-
ability measure which, to each ^e {A1 , . . . , Aq, 0} v, assigns probability

Taking q = 2 and identifying A1 (resp. A2) with A (resp. B) yields the
ordinary VLWR model. Note, however, that taking q = 3 gives something
entirely different from the trinary model considered in Subsection 5.2. The
multitype VLWR model can, of course, be extended to Z^in the usual way,
and it turns out that much of the theory for the VLWR model obtained
in previous sections can be extended in a straightforward manner to the
multitype VLWR model. For q^3 and y = q, the results in Section 3 can
be extended to yield an equivalence between the multitype VLWR model
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and a kind of multitype beach model considered by Burton and Steif.(7)

For y^ 1, we can also replace the volume-interaction factor by a (q + 1)st
particle type, and get multitype analogues of the results in Subsection 5.2.

The multitype VLWR model also admits a random-cluster representa-
tion as in Section 5; the factor 2k2(n ) in (7) then has to be replaced by qk2(n)

The proof of Theorem 2.3 can then be extended in a completely straight-
forward manner to prove the following multitype generalization.

Theorem 6.2. For fixed d2, q^2 and y>0, the multitype
VLWR model on Zd with parameters q, A and y has a unique Gibbs
measure if A is taken to be sufficiently small. If instead 1 is taken to be
sufficiently large, then the model has more than one Gibbs measure.

The extension of Theorem 2.4 to the multitype case is somewhat
trickier, but can still be done: The proofs of Lemma 4.5 and Theorem 2.4
easily extend to show that for d^2, q^2 and y^q, there exists a critical
value Xc = kc(d, q, y) such that

for j=i, where Vq,y,g is defined analogously to vg,r. It then only remains to
prove a multitype analogue of Lemma 4.5, i.e., to show that we have
uniqueness of Gibbs measures if and only if

As before, the "only if" direction is obvious, but the "if" direction is not.
The proof of Lemma 4.5 does not extend to the multitype case, because it
makes essential use of stochastic domination with respect to the ordering
A<0<B, and the state space {A1,..., Aq, 0} does not admit any natural
such ordering. Instead, we have to make use of the random-cluster
representation in a careful adaption of a proof of a Potts model analogue
of the equivalence asserted in (30). That proof is due to Aizenman et al.(1)

and can also be found in ref. 20. Although somewhat tedious, this approach
does work, and we obtain the following generalization of Theorem 2.4.

Theorem 6.3. For fixed d > 2 , q ^ 2 and y > q , there exists a critical
value lc = lc(d,q,y) such that for 1 < A C , the multitype VLWR model on
Zd with parameters q, 1 and y has a unique Gibbs measure, whereas for
A > c the model has more than one Gibbs measure.



The lack of a natural total ordering of {A1 , . . . , Aq, 0} makes parts of
Proposition 2.5 impossible to extend to a multitype setting; there seems to
be no sensible analogue of (5) for g^3. On the other hand, the random-
cluster approach shows that for y > q, the limit v^'v = lim,^ x v|-^ is well
defined, a result that we made implicit use of in writing down (29).

Let us conclude with a problem about the critical behaviour of this
model. Suppose that d, q and y are chosen as in Theorem 6.3, and let A be
critical, i.e., G = kc(d, q, y). Do we then have a unique Gibbs measure? By
analogy with Ising and Potts models, one might suspect that the answer
should be yes for q = 2 and no for q sufficiently large (depending on d), but
it is not at all clear how trustworthy such an analogy is. The answer may
of course also depend on y.
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